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A rheological  analysis  of the volume deformat ion of an amorphous  h igh-po lymer  substance  in 
the highly elast ic  s ta te  was made.  It was shown that the dependence of the volume upon the 
hydros ta t ic  p r e s s u r e  of the ambient  medium can be fo rmal ly  expressed  by  models of Voigt 
- K e l v i n  and Maxwell bodies.  

1. When an amorphous  po lymer  is heated beyond the g l a s s - t r an s i t i on  t empera tu re ,  the volume of 
the po lymer  changes in the course  of t ime in dependence of the p r e s s u r e  of the ambient  medium and the 
t empera tu re .  This well  known fact  has been descr ibed  in Chapter  4.2 of the book by MacCalvey (1954) on 
the convers ion  of p o l y m e r s .  When at the t ime t = t o the p r e s s u r e  or  the t empe ra tu r e  is changed, the vo l -  
ume changes instantaneously f r o m  V 0 to V 1. This change continues in the course  of t ime until the s ta te  of 
equi l ibr ium volume V e has been reached.  As in the case  of c rys ta l l ine  ma te r i a l s ,  the d i f ference  V i = V 1 

- V 0 re su l t s  f r o m  changes in the in te rmolecu la r  d is tances .  The ensuing volume deformat ion  is caused by  
t ime-dependent  changes in the length of chain molecules .  When the external  p r e s s u r e  is removed at the 
t ime  t*, the volume d e c r e a s e s  gradual ly  to the initial value V 0. 

2. F igure  1 shows the t ime dependence of the volume change and depends upon the actual p rocess  
under considera t ion.  The rheological  aspect  of the p roce s s  can be discussed with two models .  They are  
exp res sed  by the s t ruc tu ra l  fo rmulas  (Fig. 2) I = H - K and II = H/M. 

Let  us d iscuss  model I. The rheological  equation of this model has the fo rm 

s - ~ t  1 se%-- (2.1) e = - -  -t- e e o +  dt . 
2~t H 

Differentiat ion with r e s pec t  to t ime resu l t s  in 

s ~Kt" l ise~tdt ) . (2.2) e =  s -~-g_e--~ l e o +  
2~ n 4- 2"q 

0 

When the express ion  of Eq. (2.1) is inser ted in place of the t e r m  in pa ren theses ,  we obtain 

sq -t- s ' = 2he+ 2pge. (2.3) 
~tH ~H 

a. Let us cons ider  the p roces s  a f te r  p r e s s u r e  has been removed f r o m  the body, i . e . ,  when s and w 
have vanished at the t ime t* = 0. Then, according to Eq. (2.3), we have 

~e + ~Ke = 0 (2.4) 
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F ig .  1. T i m e  dependence of the v o l u m e w h e n  
hyd ros t a t i c  p r e s s u r e  is applied at the t ime 
t o and r e m o v e d  at the t ime t*. 

211H~ K 
S-- 

�9 ~n + ~K 

o r  

e = e* exp - - ~  , 

where  e* denotes  the de fo rmat ion  at t = t*. 

Thus,  the p r o c e s s  can be c h a r a c t e r i z e d  by  the r e -  
t a rda t ion  tirae 

Tret~- ~ �9 (2.6) 
~K 

b. Let  us a s s u m e  that the de fo rma t ion  is kept con -  
s tan t  and amounts  to e = e* a f te r  the t ime t = t* = 0, so 
that ~ = 0. We obtain f r o m  Eq. (2.3): 

1~ + InK 
s._3___~ + s -- 2PKe* (2.7) 
~tH ~H 

~H~K 1 - ~ 4  (2.8) 
e 

o r  

e + (s o -  2e* 

This means  that  the re  exis ts  a re laxa t ion  t ime 

Let  us cons ide r  model  II. 
We have in this ca se  

Trel= ~I (2.8 ') 

This model  has been u s e d s o m e  t ime ago by Poynt ing  and Thomson  (1929). 

s + s ~l = 2P, H e + 2r I ~t H ~- ~tM " e .  (2 .9)  
/XM /Xta 

a. As in the p reced ing  sect ion,  we cons ide r  f i r s t  the c a s e  

s = ~ = 0  (2.10) 

o r  

In tegra t ion  of this equation r e su l t s  in 

~He + rl 
~t M 

~=0. (2.11) 

e = e*exp [ ( ~ l l J  . , 2  ]xM ~tat "1 

Consequent ly ,  the re  exis ts  a r e t a rda t i on  t ime 

b. When we a s s u m e  

Tret = 
Ix~t ttH 

e = e * ,  e = 0 ,  

(2.12) 

(2.13) 

(2.14) 

we obtain with Eq. (2.9) 

s -~- S TI = 2[ZHe*. 
~M 

This  d i f ferent ia l  equat ion has the solut ion 

s = s~tMe* + (so - -  2~He*) exp (--  Tlt/~tM) 

and the re laxa t ion  t ime 

Trel: ~] 

(2.15) 

(2.16) 

(2.17) 
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Model I Model II 
A comparison of Eqs. (2.3) and (2.9) allows us to establish 

a relation between the parameters  of the two models [n the form 

I I 
~tH ~t< 

I~ -- ~ q_ ~ (2.18) 

~' (~,)~ 
~"~ ( ~  + ~  

Fig. 2. Rheological models for  
the volume deformation of poly-  In analogous fashion, #IK, # [ ,  and ~/I can be expressed by #~, 

II II mers .  #M, and ~? . This means that there exists a cer tain f reedom to 
use either model I or  model II. 

3. In o rde r  to determine the influence of the p re s su re  of the ambient medium upon the volume, we 
use model I. In our ensuing discussion, we will use Henke's definition (1931) of volume deformation:  

e v -- In (V/Vo), (3.1) 

where V 0 denotes the volume under atmospheric  p res su re  (P0 = 0). The rheologtcal  equation of model I can 
be expressed by Eq. (2.1), t . e . ,  

_ p j  (3.2) gy~ 

In our case ev0 = 0. 

We will assume that the quantity k is constant and that the pa ramete r  ~ is a function of p. This func- 
tion will be determined below. Naturally, the quantity ~ is also a function of t. By differentiating Eq. (3.2), 
we obtain 

k---~-+~ I+--~-H +-~M . ~ = e v + e  V T + - - ~ - ( ~ _ ~ )  . (3.3) 

Let us assume that the dependence of 7? upon the free volume has the same form as the dependence of 
the shear ing viscos i ty  ~ upon the free volume, the dependence having been derived in 1951 by Dooltttle. We 
are of the opinion that the mechanism of viscosi ty  changes is the same in both eases .  The dependence is 
expressed by the formula  

In ~ = B  t fo ' 

where t 0 denotes the v iscos i ty  under atmospheric  p ressure .  Fur the rmore ,  we have 

f = Vt/V. (3.5) 

The p r e s s u r e  dependence of f is given by the differential equation 

df d (Vyv) Pt + [~f, (3.6) 
dp dp 

where flf and 13 are  mater ia l  constants given by the relations 

_ ~ .  dV~ =p~; _ ! .  dV=~ (3.7) 
V dp V dp 

at constant tempera ture .  

The solution to Eq. (3.6) is 

[ = -~_ + (,o _~-. _ ~  ) e-~,. (3.8) 

We obtain with Eq. (3.4) 
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"{ t  + 

We have in the case  tip < 1 

e--~P ,~ 1 - -  ~p (3.1o) 

and Eq. (3.9) t r a n s f o r m s  into 

In ~-o = ~" P (3.11) 
fo {):o/(~fo--~f) -p} = A (C- -  p ) "  

This  e x p r e s s i o n  t r a n s f o r m s  into the f o r m u l a  of F e r r y  and St rut ton (1960) f o r  fi = 0. 

4. Let  us c o n s i d e r  three  p a r t i c u l a r  c a se s ,  name ly :  

a. 

p = p ~ ( c o n s t ) .  (4.1) 

Cons equently,  

= ]~ = 0 (4.2) 

Then, acco rd ing  to Eq. (3.3), we have 

The solut ion to this equat ion is 

P k H -[- k K k K 
T " ~ =  e v - e v  ~ (4.3) 

PC PC 
e v =  kH + - ~ K  (i--e-kKt/~)" (4.4) 

Equation (4.4) e x p r e s s e s  the dependence of the vo lume de fo rma t ion  upon the t ime when a cons tan t  p r e s s u r e  
is act ing.  

b. Let  us a s sume  that the volume expansion is e~ .  The p r e s s u r e  is a s sumed  to d e c r e a s e  to a t m o s -  
pher ic  p r e s s u r e ,  which is a s s u m e d  to be z e r o :  

p = O. (4.5) 

We have in this c a s e  

6=0, /~=0 (4.6) 

and obtain f r o m  Eq. (3.3) 

ev_ kK 
~o ev = 0 (4.7) 

or ,  a f ter  integrat ion,  
, - - k .  t / to  

ev : eve r, , 

and the volume d e c r e a s e s  with the r e t a rda t i on  t ime:  

Tret ~--- ~O/kK. 

(4.8) 

(4.9) 

c. Let  us a s sume  that the volume expansion is e~cand is kept cons tan t  so that bV = 0. The p r e s s u r e  
change  ~) is in this ca se  de te rmined  f r o m  Eq. (3.3): 

i~ ~(1--A)+ kH ev-yd t-e;--(t  § l+-~(Cp+p2)- ~ e;(p-c)=o.  (4.10) 

Let  us use  this equation fo r  e x t r e m e l y  la rge  p r e s su re ' s  p, when ~ ~ ~ and ~ -- O, w h e r e  ~ denotes  the a s y m p -  
totic value of ~ fo r  p = ~. Equat ion (4.10) a s s u m e s  in this c a s e  the fol lowing f o r m :  
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p ( k~)  kK (4.11) 

We obtain af ter  integration 

kHki( e* [ i - - e x p {  
P = kH+kK~ v 

The quantity p will dec rease  with the relaxat ion t ime: 

(k H = + k ~ ) t } ]  . (4.12) 

Trei = ~/(k H + kK). (4.13) 

C O N C L U S I O N S  

It was shown that in an amorphous polymer ,  the rheological  p rocess  of volume change produced by 
changes in the ambient p re s su re  can be fo rmal ly  descr ibed by two equivalent models:  model I = H - K and 
model II = H/M, The p roces se s  can be charac te r ized  by re tardat ion  and relaxat ion t imes,  which, in turn, 
depend upon the absolute values of e las t ic i ty  and viscosi ty.  

A , B , C  
e 
ev  

f 
f o = f  
H 
K 
M 
S 

t 

T r e t  
Tre l  
V 
Vo 
Vf 

k 

P 

N O T A T I O N  

are  the mater ia l  constants; 
is the deformation; 
is the volume expansion; 
is the deformation rate; 
is the specific f ree  volume; 
under a tomospheric  p ressure ;  
Hooke; 
Kelvin; 
Maxwell; 
ts the s t ress ;  
ts the rate  of s t r e s s  change; 
Ls the time; 
is the re tardat ion  time; 
m the relaxat ion time; 
ts the volume; 
ts the volume under a tmospher ic  p ressure ;  
ts the f ree  volume; 
ts the volume viscosity;  
ts the modulus of bulk elastici ty;  
m the shear  modulus; 
ts the coefficient of shear  viscosi ty.  
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