INFLUENCE OF THE PRESSURE OF THE AMBIENT
MEDIUM UPON THE VOLUME OF HIGH-POLYMER
MATERIALSY
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A rheological analysis of the volume deformation of an amorphous high-polymer substance in
the highly elastic state was made. It was shown that the dependence of the volume upon the
hydrostatic pressure of the ambient medium can be formally expressed by models of Voigt
—Kelvin and Maxwell bodies.

1. When an amorphous polymer is heated beyond the glass-transition temperature, the volume of
the polymer changes in the course of time in dependence of the pressure of the ambient medium and the
temperature. This well known fact has been described in Chapter 4.2 of the book by MacCalvey (1954) on
the conversion of polymers, When at the time t = t; the pressure or the temperature is changed, the vol-
ume changes instantaneously from V; to V;. This change continues in the course of time until the state of
equilibrium volume Vg has been reached. As in the case of crystalline materials, the difference Vi = V;
-V, results from changes in the intermolecular distances. The ensuing volume deformation is caused by
time-dependent changes in the length of chain molecules, When the external pressure is removed at the
time t*, the volume decreases gradually to the initial value V|,

2. Figure 1 shows the time dependence of the volume change and depends upon the actual process
under consideration. The rheological aspect of the process can be discussed with two models. They are
expressed by the structural formulas (Fig. 2) [ = H—-K and 1T = H/M.

Let us discuss model I. The rheological equation of this model has the form
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Differentiation with respect to time results in
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When the expression of Eq. (2.1) is inserted in place of the term in parentheses, we obtain
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a. Let us consider the process after pressure has been removed from the body, i.e., when s and §
have vanished at the time t* = 0. Then, according to Eq. (2.3), we have

ne + pe = 0 (2.4)
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or

14
e = e*exp [—«—HK—t], (2.5)
n
where e* denotes the deformation at t = t*,
'~ Thus, the process can be characterized by the re-
e M tardation time
I | )
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Tra= —-. (2.6)
A g
7 e 7 b, Let us assume that the deformation is kept con-
0 stant and amounts to e = e* after the time t = t* = 0, so

Fig. 1. Time dependence of the volume when that & = 0. We obtain from Eq. (2.3):

hydrostatic pressure is applied at the time ; A
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t, and removed at the time t*, . + s R 2pge* 2.7
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This means that there exists a relaxation time
n y
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Let us consider model II, This model has been used some time ago by Poynting and Thomson (1929).
We have in this case
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a. As in the preceding section, we consider first the case
s=5§=0 (2.10)
or
uHe + M m é=0‘ (2_11)
%
Integration of this equation results in
e = e*exp [—— l@ﬁ“—t—J (2.12)
Iyt By)n
Consequently, there exists a retardation time
T 0y +uyy) (2.13)
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b. When we assume
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e=e* e=0
we obtain with Eq. (2.9)
s+ 5 = 2 e*. (2.15)
My
This differential equation has the golution
§ = Spye* -+ (5 — 2uyye*) exp (— /iy (2.16)
and the relaxation time
Trog= —. (2.17)
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A comparison of Egs. (2.3) and (2.9) allows us to establish

del I Model 11
Mode oce a relation between the parameters of the two models in the form
F"‘H —_ Mhp{(
AR T
2
zf‘k 1 (M)
— 2'
M= my (2.18)
g ()
Tl Fph?
Fig. 2. Rheological models for e
the volume deformation of poly- In analogous fashion, u%{, u{{, and 7! can be expressed by u%,
mers. u{&[, and nn. This means that there exists a certain freedom to

use either model I or model II,

3. In order to determine the influence of the pressure of the ambient medium upon the volume, we
use model I. In our ensuing discussion, we will use Henke's definition (1931) of volume deformation:

e, = In(V/Vy), (3.1)

where V,, denotes the volume under atmospheric pressure (p, = 0). The rheological equation of model I can
be expressed by Eq. (2.1), i.e.,
—{ kg dtfc

jk dt/t
ev*‘%'*‘ i : j‘pe dt. (3.2)

In our case ey, = 0.

We will assume that the guantity k is constant and that the parameter ¢ is a function of p. This func-
tion will be determined below. Naturally, the quantity ¢ is also a function of t. By differentiating Eq. (3.2),
we obtain

p p £ ky C”‘Ct)__- {C kx ;
E;+‘;‘(‘+’1?,,‘+7e;‘ A - Sl (3.3)

Let us assume that the dependence of 1 upon the free volume has the same form as the dependence of
the shearing viscosity £ upon the free volume, the dependence having been derived in 1951 by Doolittle, We
are of the opinion that the mechanism of viscosity changes is the same in both cases. The dependence is

expressed by the formula
In (5—) =B(—1—-—1), (3.4)
L | A

where £, denotes the viscosity under atmospheric pressure. Furthermore, we have

f=ViV. (3.5)
The pressure dependence of f is given by the differential equation
dj ay
d _ 4V — B, +Bi, (3.6)
dp dp :
where B¢ and 8 are material constants given by the relations
1 av, - 1 dv (3.7
_— =By —— =B
1% dp vV dp
at constant temperature,
The solution to Eq. (3.6) is
B, By
f:_+(f _.___)e—pp, (3.8)
po\" B

We obtain with Eq. (3.4)
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We have in the case fp <1
el —Bp (3.10)
and Eq. (3.9) transforms into
R AT @10
This expression transforms into the formula of Ferry and Strutton (1960) for g = 0
4. Let us consider three particular cases, namely:
a.
p = p. (const). @.1)
Consequently,
t=p=0. 4.2)
Then, according to Eq. (3.3), we have
% ‘ kH;;kK:e‘V_—eV_I;i_ 4.3)
The solution to this equation is
P 4.4)

e P o kot
e, = kH—§— kK’ (1—e"K'[T).

v

Equation (4.4) expresses the dependence of the volume deformation upon the time when a constant pressure

is acting.
b. Let us assume that the volume expansion is e§;. The pressure is assumed to decrease to atmos-
(4.5)

pheric pressure, which is assumed to be zero:

p=0.
We have in this case
t=0, p=0 4.6)
and obtain from Eq. (3.3)
év"_%:— e, =0 (4.7)
or, after integration,
e, =ele K (4.8)
and the volume decreases with the retardation time:
Tret = Lolky- (4.9)
c. Letus assume that the volume expansion is ej; and is kept constant so that ey = 0. The pressure
4.10)

change p is in this case determined from Eq. (3.3):
P AC ke p *kK} A{ ky
— (= e — S T 1 = (Cppd)—
p{kﬂ( )+kH kg T e p L7 Ry ptr)
Let us use this equation for extremely large pressures p, when £ — £ and £ = 0, where { denotes the asymp-
totic value of & for p = «, Equation (4.10) assumes in this case the following form:

ked
: €, (p—C)=0.
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We obtain after integration

oy B [ ’ [ By th) |
= LK e | —exp{ — —2 t}] 4.12
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The quantity p will decrease with the relaxation time:
Trer = Uik + - (4.13)

CONCLUSIONS

It was shown that in an amorphous polymer, the rheological process of volume change produced by
changes in the ambient pressure can be formally described by two equivalent models: model I = H — K and
model IT = H/M, The processes can be characterized by retardation and relaxation times, which, in turn,
depend upon the absolute values of elasticity and viscosity.

NOTATION

A B, C are the material constants;
e is the deformation;

ey is the volume expansion;
e is the deformation rate;

£ is the specific free volume;

fo=1 under atomospheric pressure;

H Hooke;

K Kelvin;

M Maxwell;

s is the stress;

] is the rate of stress change;

t is the time;

Tret is the retardation time;

Trel is the relaxation time;

is the volume;

is the volume under atmospheric pressure;
the free volume;

is the volume viscosity;

is the modulus of bulk elasticity;

is the shear modulus;

is the coefficient of shear viscosity.
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